

Hyperion On-Orbit Validation of Spectral Calibration using Atmospheric Lines and an On-board System

Pamela Barry, John Shepanski, Carol Segal TRW, Redondo Beach

August 2nd 2001

Introduction

Hyperion Instrument

Spectral Calibration

On-Orbit Verification Technique

Comparison

Hyperion Image Overview

- 7.7 km swath width
- 160 km swath length (time variable)
- 30 meter spatial resolution
- 10 nm spectral resolution
- 200 radiometrically and spectrally calibrated continuous bands from 435 nm to 2400 nm

 Better than 6% absolute radiometric accuracy

Pushbroom configuration, entire swath width collected each frame sampled every 4.5 ms, or 223.4 frames/second.

Common fore-optics, dichroic filter reflects 400 nm to 1000 nm to the VNIR and transmits 900 nm to 2500 nm to the SWIR.

Gratings disperse light onto two focal planes

Produces a three dimensional data cube 256x6925x242 in 30 seconds!

Samples of of Hyperion Spectra

Spectral Calibration Calibration

Defined by a center wavelength an assumed Gaussian full width half max

Measured center wavelength and bandwidth at discrete locations on the focal plane, 20 VNIR locations, 25 SWIR locations.

Used to define a value for EVERY VNIR and SWIR pixel, 256 field-of-view locations and 242 spectral bands.

Contained in two ascii files SpectralL0_revA.1, BandwidthL0_revA.1 (_revA.1 because of file format change)

Characteristics of Spectral Calibration

Center wavelength and Bandwidth described by the assumed Gaussian

Dispersion which is nm spacing of spectral channels, Hyperion dispersion (~10nm/pixel) closely matches the bandwidth (10 nm)

Cross-track spectral error which is the maximum variation of the center wavelength across the field-of-view for a single spectral channel, 2.6-3.6 for VNIR and .40-.97 for SWIR. Example below.

VNIR Spectral Variation Across the Field of View

SWIR Spectral Variation Across the Field of View

On-Orbit Spectral Calibration Verification

Goal

verify center wavelength for VNIR and SWIR verify cross-track spectral error verify dispersion

Performed atmospheric Limb collect

collect of reference spectrum (atmosphere and diffuse reflectance)

collect uniform across the field-of-view

spectral features spanned SWIR, in VNIR

Following to present:

description of collect, and data analysis technique and verification of VNIR and SWIR spectral calibration

Hyperion Spectral Calibration

Atmoshperic Limb Sample Spectra for the VNIR and SWIR Approximate Identification of Features

Spectral Calibration –SWIR

Hyperion Spectra of Atmospheric Limb Collect – red Atmospheric Reference Profile from Modtran 3 – black

Process:

- 1.) Create Pseudo-Hyperion Spectra from reference: Modtran-3 for atmosphere, and Cary 5 & FTS measurements for diffuse reflectance of the cover
- 2.) Correlate Spectral
 Features: band number units of
 Hyperion max/min correlated
 with reference wavelength of
 max/min
- 3.) Calculate Band to Wavelength map: apply low order polynomial to fit the data over the entire SWIR regime

Calibration Comparison: SWIR

SWIR Comparison of Spectral Calibration: Spectral Band 87

■ Pre-Flight Points • Pre-FLight Calibration → On-Orbit Calibration

Accuracy assessment: accuracy of diffuse reflectance reference spectrum < 1 nm accuracy of analysis method +- 1 nm

Calibration Comparison: SWIR

SWIR Comparison of Spectral Calibration: Spectral Band 216

■ Pre-Flight Points
 • Pre-Flight Calibration
 • On-Orbit Calibration

Accuracy assessment: accuracy of the atmospheric absorption reference spectrum, +-2.5 nm accuracy of analysis method +- 1 nm

VNIR Spectral Calibration: Solar & Oxygen

OXYGEN LINE

Hyperion Data (red)
PLEXUS Calculation (blue)
White Paint Transmission (green)

SOLAR LINE

Hyperion Data (red)
Solar Reference (blue)

White Paint Transmission (green)

Calibration Comparison: VNIR

VNIR Comparison at Spectral Channel 17

Accuracy assessment: accuracy of the solar reference spectrum, +-1 nm accuracy of analysis method +- 1 nm

Calibration Comparison: VNIR

VNIR Comparison at Spectral Channel 41

Accuracy assessment: accuracy of the atmospheric oxygen reference spectrum, +-1 nm accuracy of analysis method +- 1 nm

NOTE: offset and rotation applied to pre-flight calibration file to match reference

Spectral Comparison

Technique used to verify center wavelength for VNIR and SWIR focal plane Verification wavelength dependent, ranges from +- 1 nm to +-2.5 nm. Accuracy dependent on reference spectrum and analysis method

Results used to verify no change in VNIR and SWIR dispersion:

VNIR: 10.18 nm/pixel pre-flight (compared to) 10.19 nm/pixel on-orbit

SWIR: 10.09 nm/pixel pre-flight (compared to) 10.09 nm/pixel on-orbit

Results used for verify cross-track spectral error:

VNIR: 2.8 to 3.6 pre-flight (compared to) 1.7 to 2.55 on-orbit

SWIR: < 1nm pre-flight (compared to) < 1 nm on-orbit

Conclusions

Developed on-orbit technique based on atmospheric limb collect

strength was the absorption features of the diffuse reflectance of white paint current largest source of errors associated with: reference atmospheric profile related to knowledge of cut through the atmosphere

On-orbit verification of SWIR center wavelength, cross-track spectral error measurement, dispersion measurement all agree with pre-flight measurements and requirements

VNIR spectral calibration verification performed using combination of Oxygen line (762.5 nm) from atmospheric line and Fraunhoffer line (520 nm) visible in solar calibration collect.